離散数学演習13 解答例

1. $H_1 \subseteq G$, $H_2 \subseteq G$ だから, $H_1 \cap H_2 \subseteq G$.

任意の $x, y \in H_1 \cap H_2$ に対して, $x, y \in H_1$ かつ $x, y \in H_2$.

 H_1 , H_2 は群だから, $xy \in H_1$ かつ $xy \in H_2$. ゆえに, $xy \in H_1 \cap H_2$.

 $e \in H_1$ かつ $e \in H_2$ だから, $e \in H_1 \cap H_2$.

任意の $x \in H_1 \cap H_2$ に対して $, x \in H_1$ かつ $x \in H_2$.

 H_1, H_2 は群だから, $x^{-1} \in H_1$ かつ $x^{-1} \in H_2$. ゆえに, $x^{-1} \in H_1 \cap H_2$.

以上から、 $(H_1 \cap H_2, \cdot)$ は G の部分群である.

2. 任意の $x,y \in X$ に対して,

$$\begin{array}{rcl} (\psi \circ \varphi)(xy) & = & \psi(\varphi(xy)) \\ & = & \psi(\varphi(x)\varphi(y)) \\ & = & \psi(\varphi(x))\psi(\varphi(y)) \\ & = & (\psi \circ \varphi)(x)(\psi \circ \varphi)(y) \end{array}$$

となるから、 $\psi \circ \varphi$ は準同型である.

3. (1) • 任意の $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in G^2$ に対して、

$$((x_1, y_1) \circ (x_2, y_2)) \circ (x_3, y_3) = (x_1 \cdot x_2, y_1 \cdot y_2) \circ (x_3, y_3)$$

$$= ((x_1 \cdot x_2) \cdot x_3, (y_1 \cdot y_2) \cdot y_3)$$

$$= (x_1 \cdot (x_2 \cdot x_3), y_1 \cdot (y_2 \cdot y_3))$$

$$= (x_1, y_1) \circ (x_2 \cdot x_3, y_2 \cdot y_3)$$

$$= (x_1, y_1) \circ ((x_2, y_2) \circ (x_3, y_3))$$

ゆえに、結合則が成り立つ.

- $(e,e) \in G^2$ を考えると、任意の $(x,y) \in G^2$ に対して、 $(x,y) \circ (e,e) = (x \cdot e, y \cdot e) = (x,y)$. 一方、 $(e,e) \circ (x,y) = (e \cdot x, e \cdot y) = (x,y)$. ゆえに、 $(x,y) \circ (e,e) = (e,e) \circ (x,y) = (x,y)$ だから、(e,e) は単位元である.
- G は群だから、 $x,y \in G$ に対して、それぞれ逆元 x^{-1} 、 y^{-1} が存在する。任意の $(x,y) \in G^2$ に対して、 $(x^{-1},y^{-1}) \in G^2$ を考えると、 $(x,y) \circ (x^{-1},y^{-1}) = (x \cdot x^{-1},y \cdot y^{-1}) = (e,e)$ 、 $(x^{-1},y^{-1}) \circ (x,y) = (x^{-1} \cdot x,y^{-1} \cdot y) = (e,e)$. ゆえに、 $(x,y) \circ (x^{-1},y^{-1}) = (x^{-1},y^{-1}) \circ (x,y) = (e,e)$ だから、(x,y) の逆元は (x^{-1},y^{-1}) である.
- 以上から, (G^2, \circ) は群である.
- (2) $\operatorname{kernel}(\varphi) = \{(x,y) \mid \varphi((x,y)) = e, \ x,y \in G\}$ である. ここで, $\varphi((x,y)) = x$ だから, x = e. ゆえに, $\operatorname{kernel}(\varphi) = \{(e,y) \mid y \in G\}$.
- (3) $\operatorname{image}(\varphi) = \varphi(G^2) = \{ \varphi((x,y)) \mid (x,y) \in G^2 \} = \{ x \mid x,y \in G \} = G$
- (4) 任意の $(x_1,y_1),(x_2,y_2)\in G^2$ に対して, $\varphi((x_1,y_1)\circ(x_2,y_2))=\varphi(x_1\cdot x_2,y_1\cdot y_2)=x_1\cdot x_2$. 一方, $\varphi((x_1,y_1))\cdot \varphi((x_2,y_2))=x_1\cdot x_2$. ゆえに, $\varphi((x_1,y_1)\circ(x_2,y_2))=\varphi((x_1,y_1))\cdot \varphi((x_2,y_2))$ だから, φ は準同型である.
- 4. $\varphi:G\to H$ を次のように定める: $\varphi(E)=f_1,\, \varphi(A)=f_2,\, \varphi(B)=f_3,\, \varphi(C)=f_4$ このとき、

$$\varphi(EE) = \varphi(E) = f_1 = f_1 \circ f_1 = \varphi(E) \circ \varphi(E)$$

$$\varphi(EA) = \varphi(A) = f_2 = f_1 \circ f_2 = \varphi(E) \circ \varphi(A)$$

$$\varphi(EB) = \varphi(B) = f_3 = f_1 \circ f_3 = \varphi(E) \circ \varphi(B)$$

$$\varphi(EC) = \varphi(C) = f_4 = f_1 \circ f_4 = \varphi(E) \circ \varphi(C)$$

$$\varphi(AE) = \varphi(A) = f_2 = f_2 \circ f_1 = \varphi(A) \circ \varphi(E)$$

$$\varphi(AA) = \varphi(E) = f_1 = f_2 \circ f_2 = \varphi(A) \circ \varphi(A)$$

$$\varphi(AB) = \varphi(C) = f_4 = f_2 \circ f_3 = \varphi(A) \circ \varphi(B)$$

$$\varphi(AC) = \varphi(B) = f_3 = f_2 \circ f_4 = \varphi(A) \circ \varphi(C)$$

$$\varphi(BE) = \varphi(B) = f_3 = f_3 \circ f_1 = \varphi(B) \circ \varphi(E)$$

$$\varphi(BA) = \varphi(C) = f_4 = f_3 \circ f_2 = \varphi(B) \circ \varphi(A)$$

$$\varphi(BB) = \varphi(E) = f_1 = f_3 \circ f_3 = \varphi(B) \circ \varphi(B)$$

$$\varphi(BC) = \varphi(A) = f_2 = f_3 \circ f_4 = \varphi(B) \circ \varphi(C)$$

$$\varphi(CE) = \varphi(C) = f_4 = f_4 \circ f_1 = \varphi(C) \circ \varphi(E)$$

$$\varphi(CA) = \varphi(B) = f_3 = f_4 \circ f_2 = \varphi(C) \circ \varphi(A)$$

$$\varphi(CB) = \varphi(A) = f_2 = f_4 \circ f_3 = \varphi(C) \circ \varphi(B)$$

$$\varphi(CC) = \varphi(E) = f_1 = f_4 \circ f_4 = \varphi(C) \circ \varphi(C)$$

ゆえに、任意の $X,Y \in G$ に対して、 $\varphi(XY) = \varphi(X) \circ \varphi(Y)$.

また, φ は明らかに全単射である.

したがって, φ は同型写像であり, $G \simeq H$.

5. (1) 任意の $x,y \in \mathbf{R}$ に対して, $\varphi(x) = \varphi(y)$ とする. このとき, $\exp(x) = \exp(y)$ だから, x = y. ゆえに, φ は単射である.

任意の $x,y \in \mathbf{R}$ に対して, $\varphi(x+y) = \exp(x+y) = \exp(x)\exp(y) = \varphi(x)\varphi(y)$. ゆえに, φ は 準同型である.

- (2) $\operatorname{image}(\varphi) = \{\varphi(x) \mid x \in \mathbf{R}\} = \{\exp(x) \mid x \in \mathbf{R}\}.$ $(\mathbf{R} \{0\}, \cdot)$ の単位元は 1 だから、 $\operatorname{kernel}(\varphi) = \{x \mid \varphi(x) = 1\}.$ $\varphi(x) = \exp(x) = 1$ のとき、x = 0 だから、 $\operatorname{kernel}(\varphi) = \{0\}.$
- (3) (1) と同様に、 $\varphi': \mathbf{R} \to \mathbf{R}^+$ として $\varphi'(x) = \exp(x)$ を考えると、 φ' は単射かつ準同型である. 任 意の $y \in \mathbf{R}^+$ に対して、 $x = \log y$ とおくと、 $y = \varphi'(x)$ かつ $x \in \mathbf{R}$. ゆえに、 φ' は全射である. φ' は全単射かつ準同型だから、 $(\mathbf{R},+) \simeq (\mathbf{R}^+,\cdot)$.
- 6. φ は単射であるとする.

任意の $x \in \text{kernel}(\varphi)$ に対して, $\varphi(x) = e'$. また, 群準同型は単位元を保存するから, $\varphi(e) = e'$. ゆえに, $\varphi(x) = \varphi(e)$. φ は単射であるから, x = e.

したがって, $kernel(\varphi) \subseteq \{e\}$.

また, $\varphi(e) = e'$ から, $e \in \text{kernel}(\varphi)$. ゆえに, $\{e\} \subseteq \text{kernel}(\varphi)$.

以上から, $kernel(\varphi) = \{e\}$.

逆に, $kernel(\varphi) = \{e\}$ とする.

また, 任意の $x_1, x_2 \in G$ に対して, $\varphi(x_1) = \varphi(x_2)$ とする.

このとき, $e' = \varphi(x_1) * \varphi(x_2)^{-1}$.

群準同型は逆元を保存するから、 $\varphi(x_2)^{-1}=\varphi(x_2^{-1})$. ゆえに、 $e'=\varphi(x_1)*\varphi(x_2^{-1})$.

さらに、 φ は準同型だから、 $e' = \varphi(x_1x_2^{-1})$. ゆえに、 $x_1x_2^{-1} \in \text{kernel}(\varphi) = \{e\}$.

したがって, $x_1x_2^{-1} = e$ だから, $x_1 = x_2$. すなわち, φ は単射である.

$+_6$	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	1 2 3	3	4	5	0
$\overline{2}$	2	3	4	5	0	1
3	3	4	5	0	1	2
4			0	1	2	3
5	5	0	1	2	3	4

- ii) $0 \in \mathbf{Z}_6$ を考えると、 $0+_60=0$ 、 $1+_60=0+_61=1$ 、 $2+_60=0+_62=2$ 、 $3+_60=0+_63=3$ 、 $4+_60=0+_64=4$ 、 $5+_60=0+_65=5$. ゆえに、任意の $n \in \mathbf{Z}_6$ に対して、 $n+_60=0+_6n=n$. すなわち、0 は単位元である.
- iii) $0+_60=0$ だから, 0 の逆元 -0=0.

 $1+_65=5+_61=0$ だから、1 の逆元 -1=5、5 の逆元 -5=1.

2 + 64 = 4 + 62 = 0 だから、2 の逆元 -2 = 4、4 の逆元 -4 = 2.

 $3+_6 3=0$ だから、3 の逆元 -3=3.

- iv) i)~iii) から, 以下のことは明らかである.
 - 任意の $m, n, k \in \mathbf{Z}_6$ に対して, $m +_6 (n +_6 k) = (m +_6 n) +_6 k$. すなわち, 結合則が成り立つ.
 - 単位元が存在する.
 - 任意の $n \in \mathbf{Z}_6$ に対して,逆元-nが存在する.

以上から, $(\mathbf{Z}_6, +_6)$ は群である.

- ii) 任意の $m,n \in \mathbf{Z}_6$ に対して、 $\varphi(m+_6n) = \operatorname{mod} (2(m+_6n),6) \equiv 2(m+_6n) \pmod{6}^{-1}$. $2(m+_6n) \equiv 2(m+n) = 2m+2n \pmod{6}$ だから、 $\varphi(m+_6n) \equiv 2m+2n \pmod{6}$. -方、 $\varphi(m)+_6\varphi(n) = \operatorname{mod} (2m,6)+_6\operatorname{mod} (2n,6) \equiv \operatorname{mod} (2m,6)+\operatorname{mod} (2n,6) \pmod{6}$. $\operatorname{mod} (2m,6) \equiv 2m \pmod{6}$. $\operatorname{mod} (3m,6) \equiv 2m \pmod{6}$. $\operatorname{mod} (3m,6) \equiv 2m \pmod{6}$. $\operatorname{pod} (3m,6) \equiv$
- (3) i) (2) i) から, image(φ) = $\{0, 2, 4\}$.

ゆえに, φ は準同型である.

ii)				
)	$+_{6}$	0	2	4
	0	0	2	4
	2	2	4	0
	4	4	0	2

- iii) $0 \in \text{image}(\varphi)$ を考えると, $0+_60=0$, $2+_60=0+_62=2$, $4+_60=0+_64=4$. ゆえに, 任意の $n \in \text{image}(\varphi)$ に対して, $n+_60=0+_6n=n$. すなわち, 0 は単位元である.
- iv) $0+_60=0$ だから, 0 の逆元 -0=0. $2+_64=4+_62=0$ だから, 2 の逆元 -2=4, 4 の逆元 -4=2.
- v) ii)~iv) から, 以下のことは明らかである.
 - 任意の $m, n, k \in \text{image}(\varphi)$ に対して, $m +_6 (n +_6 k) = (m +_6 n) +_6 k$. すなわち, 結合 則が成り立つ.
 - 単位元が存在する.
 - 任意の $n \in \mathbf{Z}_6$ に対して,逆元-nが存在する

以上から、 $(image(\varphi), +_6)$ は群である.

(4) i) \mathbf{Z}_6 の単位元は 0 だから, (1) i) から, $kernel(\varphi) = \{0, 3\}$.

ii)			
)	$+_{6}$	0	3
	0	0	3
	3	3	0

- iii) $0 \in \text{kernel}(\varphi)$ を考えると, $0 +_6 0 = 0$, $3 +_6 0 = 0 +_6 3 = 3$. ゆえに, 任意の $n \in \text{kernel}(\varphi)$ に対して, $n +_6 0 = 0 +_6 n = n$. すなわち, 0 は単位元である.
- iv) $0+_60=0$ だから, 0 の逆元 -0=0. $3+_63=0$ だから, 3 の逆元 -3=3.
- v) ii)~iv) から, 以下のことは明らかである.
 - 任意の $m, n, k \in \text{kernel}(\varphi)$ に対して, $m +_6 (n +_6 k) = (m +_6 n) +_6 k$. すなわち, 結合 則が成り立つ.
 - 単位元が存在する.
 - 任意の $n \in \mathbf{Z}_6$ に対して,逆元-n が存在する.

以上から、 $(kernel(\varphi), +_6)$ は群である.

8. 明らかに, $\operatorname{image}(\varphi) \subseteq H$.

任意の $x', y' \in \text{image}(\varphi)$ に対して, $x, y \in G$ が存在して, $x' = \varphi(x), y' = \varphi(y)$.

 $xy \in G$ で、 φ は準同型だから、 $x'y' = \varphi(x) * \varphi(y) = \varphi(xy) \in \text{image}(\varphi)$.

¹ 整数 n, p に対して, $mod(n, p) \equiv n \pmod{p}$ であることに注意せよ.実際, ある整数 q に対して, n = qp + mod(n, p) だから, このことが成り立つ.

群準同型は単位元を保存するから, $\varphi(e) = e'$. ゆえに, $e' \in \text{image}(\varphi)$.

任意の $x' \in \text{image}(\varphi)$ に対して、 $x \in G$ が存在して、 $x' = \varphi(x)$. すなわち、 $(x')^{-1} = \varphi(x)^{-1}$. 群 準同型は逆元を保存するから、 $\varphi(x)^{-1} = \varphi(x^{-1})$. $x^{-1} \in G$ から、 $\varphi(x^{-1}) \in \operatorname{image}(\varphi)$. ゆえに、 $(x')^{-1} \in \operatorname{image}(\varphi).$

以上から、 $(image(\varphi), \cdot)$ は H の部分群である.

9. (1) 任意 $O(x,y) \in G(x)$ に対して、

```
(f+g の定義から)
(f+g)(x+y) = f(x+y) + g(x+y)
            = (f(x) + f(y)) + (g(x) + g(y)) (f, g) は準同型だから)
            = (f(x) + g(x)) + (f(y) + g(y)) (H は可換群だから)
            = (f+g)(x) + (f+g)(y)
                                       (f+g の定義から)
```

ゆえに, f+g は準同型である. すなわち, $f+g \in \text{Hom } (G,H)$.

(2) 関数 $f_c: G \to H$ を

任意の $x \in G$ に対して $, f_c(x) = c$ (c は H の単位元)と定義する. このとき、任意の $x,y \in G$ に対して、 $f_c(x+y) = c$. 一方、 $f_c(x) + f_c(y) = c + c = c$. ゆえに, $f_c(x+y) = f_c(x) + f_c(y)$ だから, $f_c \in \text{Hom } (G, H)$. さらに、任意の $f \in \text{Hom } (G,H)$ と任意の $x \in G$ に対して、 $(f+f_c)(x)=f(x)+f_c(x)=f(x)$ f(x) + c = f(x). $\neg \pi$, $(f_c + f)(x) = f_c(x) + f(x) = c + f(x) = f(x)$. ゆえに, $f + f_c = f_c + f = f$ だから, f_c は単位元である.

- (3) 任意の $f \in \text{Hom } (G, H)$ に対して、関数 $f^-: G \to H$ を 任意の $x \in G$ に対して、 $f^-(x) = -f(x)$ (-f(x) は H における f(x) の逆元) と定義する. このとき, 任意の $x,y \in G$ に対して, $f^-(x+y) = -f(x+y) = -(f(x)+f(y)) =$ $(-f(x)) + (-f(y))) = f^-(x) + f^-(y)$ だから, $f^- \in \text{Hom } (G, H)$. さらに、任意の $f \in \text{Hom } (G, H)$ と任意の $x \in G$ に対して、 $(f + f^-)(x) = f(x) + f^-(x) =$ $f(x) + (-f(x)) = c = f_c(x)$ (c は H の単位元). 一方, $(f^- + f)(x) = f^-(x) + f(x) = f^-(x)$ $(-f(x)) + f(x) = c = f_c(x).$ ゆえに, $f + f^- = f^- + f = f_c$ だから, f^- は f の逆元である.
- (4) (1)~(3) より、 $(Hom\ (G,H),+)$ において、結合則と交換則が成り立つことを示せばよい. 任意の $f, g, h \in \text{Hom } (G, H)$ と任意の $x \in G$ に対して、

$$((f+g)+h)(x) = (f+g)(x)+h(x)$$
 (定義から)
 $= (f(x)+g(x))+h(x)$ (定義から)
 $= f(x)+(g(x)+h(x))$ (H は可換群だから)
 $= f(x)+(g+h)(x)$ (定義から)
 $= (f+(g+h))(x)$ (定義から)

だから, (f+g)+h=f+(g+h). すなわち, 結合則が成り立つ.

任意の $f, g \in \text{Hom } (G, H)$ と任意の $x \in G$ に対して、

$$(f+g)(x) = f(x) + g(x)$$
 (定義から)
= $g(x) + f(x)$ (H は可換群だから)
= $(g+f)(x)$ (定義から)

だから, f + g = g + f. すなわち, 交換則が成り立つ. 以上から、(Hom(G,H),+)は可換群である.

10.

任意の $x \in Hb$ に対して, ある $h \in H$ が存在して, x = hb.

また, $x = hb = (hb)e = (hb)(a^{-1}a) = ((hb)a^{-1})a = (h(ba^{-1}))a$. H は群であり, ba^{-1} , $h \in H$ だから, $h(ba^{-1}) \in H$. ゆえに, $x \in Ha$. したがって, $Hb \subseteq Ha$. 同様に、 $Ha \subseteq Hb$.

以上から, Ha = Hb.

逆に、Ha = Hb とする. このとき, $b = eb \in Hb = Ha$ だから、ある $h \in H$ が存在して、b = ha. ゆえに、 $ba^{-1} = h \in H$.