離散数学演習7 解答例

- 1. (1) $f \subseteq A \times B$, かつ, 任意の $x \in A$ に対して, $y \in B$ が唯一存在して, $(x,y) \in f$.
 - (2) $(a,b) \in f$ であるような $b \in B$
 - (3) b = f(a) であるような $a \in A$
 - (4) $\{f(x) \mid x \in X\}$
 - (5) $\{x \mid f(x) \in Y\}$
 - (6) $\{x \in A \mid$ ある $y \in B$ に対して, $y = f(x)\}$
 - (7) $\{y \in B \mid$ ある $x \in A$ に対して, $y = f(x)\}$ (別解) $\{f(x) \mid x \in A\}$, f(A)
 - (8) 任意の $y \in B$ に対して,ある $x \in A$ が存在して,y = f(x).
 - (9) 任意の $x_1, x_2 \in A$ に対して, $x_1 \neq x_2$ ならば $f(x_1) \neq f(x_2)$. (別解) 任意の $x_1, x_2 \in A$ に対して, $f(x_1) = f(x_2)$ ならば $x_1 = x_2$.
 - (10) f は全射かつ単射である.
 - (11) f は有限集合上の全単射である.
 - (12) 任意の $x \in A$ に対して, $I_A(x) = x$.
 - (13) 任意の $x \in A$ に対して $(g \circ f)(x) = g(f(x))$.
 - (14) $g \circ f = I_A$ $\forall \circ f \circ g = I_B$.
 - (15) $\{f \mid f : A \to B\}$
 - (16) $f: A \to \{0, 1\}$
- 2. $(2,3),(2,1)\in R$ であり, $(2,x)\in R$ となる $x\in A$ は唯一でないから, R は関数ではない. $(2,y)\in S$ となる $y\in A$ が存在しないので, S は関数ではない. 任意の $x\in A$ に対して, $(x,y)\in T$ となる $y\in A$ が唯一存在するので, T は関数である.
- 3. (1) (a) $f \circ g = \{(a, a), (b, d), (c, b), (d, a)\}^{-1}$ (b) $h \circ f = \{(a, c), (b, a), (c, a), (d, c)\}$ (c) $g \circ g = \{(a, d), (b, c), (c, b), (d, a)\}$
 - (2) $a \in A$ に対して、(a,c), $(a,b) \in f^{-1}$ だから, f^{-1} は関数ではない. $g^{-1} = \{(b,a),(d,b),(a,c),(c,d)\}$ であり,任意の $x \in A$ に対して, $(x,y) \in g^{-1}$ となる $y \in A$ は 唯一である. ゆえに, g^{-1} は関数である. $x \in A$ に対して,(c,b), $(c,d) \in h^{-1}$ だから, h^{-1} は関数ではない.
 - (3) $b,c \in A$ に対して、f(b) = f(c) だから、f は単射ではない。 $A = \{a,b,c,d\}$ であって、g(a),g(b),g(c),g(d) は互いに異なるから、g は単射である。 $a,c \in A$ に対して、h(a) = h(c) だから、h は単射ではない。 $(x,c) \in f$ となる $x \in A$ は存在しないから、f は全射ではない。 任意の $g \in A$ に対して、 $(x,y) \in g$ となる $x \in A$ が存在するから、g は全射である。 $(x,b) \in h$ となる $x \in A$ は存在しないから、f は全射ではない。
- 4. $B^A = \{f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9\}$. $tilde{tilde}$

$$f_1 = \{(a,1), (b,1)\}, \qquad f_4 = \{(a,2), (b,1)\}, \qquad f_7 = \{(a,3), (b,1)\},$$

$$f_2 = \{(a,1), (b,2)\}, \qquad f_5 = \{(a,2), (b,2)\}, \qquad f_8 = \{(a,3), (b,2)\},$$

$$f_3 = \{(a,1), (b,3)\}, \qquad f_6 = \{(a,2), (b,3)\}, \qquad f_9 = \{(a,3), (b,3)\}.$$

5. 任意の $x_1,x_2\in A$ に対して、 $f(x_1)=f(x_2)$ とする.このとき、 $g(f(x_1))=g(f(x_2))$. $g(f(x_1))=(g\circ f)(x_1)=I_A(x_1)=x_1$, $g(f(x_2))=(g\circ f)(x_2)=I_A(x_2)=x_2$ だから、 $x_1=x_2$.ゆえに、f は単射である.

一方, 任意の $x \in A$ に対して, $g(f(x)) = (g \circ f)(y) = I_A(y) = y$. f(x) = y とおくと, $y \in B$ であり, g(y) = x. ゆえに, g は全射である.

 $^{^{1}} f \circ g = \left[egin{array}{ccc} a & b & c & d \ a & d & b & a \end{array}
ight]$ などと書いてもよい.

- 6. (1) g は全射だから、任意の $z \in C$ に対して、ある $y \in B$ が存在して、g(y) = z. また、f は全射だから、 $y \in B$ に対して、ある $x \in A$ が存在して、f(x) = y. すなわち、任意の $z \in C$ に対して、ある $x \in A$ が存在して、 $(g \circ f)(x) = g(f(x)) = z$ だから、 $g \circ f$ は全射である.
 - (2) 任意の $x_1, x_2 \in A$ に対して、 $(g \circ f)(x_1) = (g \circ f)(x_2)$ とする.このとき、 $g(f(x_1)) = g(f(x_2))$. g は単射だから、 $f(x_1) = f(x_2)$.さらに、f は単射だから、 $x_1 = x_2$.ゆえに、 $g \circ f$ は単射である.
 - (3) $g \circ f : A \to C$ は全射だから、任意の $z \in C$ に対して、ある $x \in A$ が存在して、 $(g \circ f)(x) = z$. このとき、 $(g \circ f)(x) = g(f(x))$ だから、 $f(x) = y \in B$ とおくと、任意の $z \in C$ に対して、ある $y \in B$ が存在して、g(y) = z. すなわち、g は全射である.
 - (4) 任意の $x_1, x_2 \in A$ に対して, $f(x_1) = f(x_2)$ とする. このとき, $g(f(x_1)) = g(f(x_2))$. ゆえに, $(g \circ f)(x_1) = (g \circ f)(x_2)$. これは $g \circ f$ は単射だから, $x_1 = x_2$. したがって, f は単射である.
- 7. (1) 任意の $y \in f(A)$ に対して、ある $x_1, x_2 \in A(x_1 \neq x_2)$ が存在して、 $(y, x_1), (y, x_2) \in f^{-1}$ と仮定する.このとき, $y = f(x_1) = f(x_2)$. f は単射だから, $x_1 = x_2$.これは矛盾.すなわち,任意の $y \in f(A)$ に対して、 $(y, x) \in f^{-1}$ となる $x \in A$ は唯一存在する.したがって, f^{-1} は f(A) から A への関数である.

 一方,任意の $y_1, y_2 \in f(A)$ に対して, $f^{-1}(y_1) = f^{-1}(y_2)$ とする. $y_1 \in f(A)$ だから,ある $x_1 \in A$ が存在して, $f(x_1) = y_1$.すなわち, $f^{-1}(y_1) = x_1$.また, $y_2 \in f(A)$ だから,ある $x_2 \in A$ が存在して, $f(x_2) = y_2$.すなわち, $f^{-1}(y_2) = x_2$.ゆえに, $x_1 = x_2$.このとき, $f(x_1) = f(x_2)$ だから $y_1 = y_2$.ゆえに, f^{-1} は単射である.
 - (2) f は全射だから, f(A) = B. (1) により, f^{-1} は B から A への単射である. 一方, f は A から B への関数だから, 任意の $x \in A$ に対して, ある $y \in B$ が存在して, y = f(x). すなわち, $f^{-1}(y) = x$. したがって, f^{-1} は全射である.
- 8. (1) 任意の $x \in X$ に対して, $f(x) \in f(X)$ だから, $x \in f^{-1}(f(X))$. ゆえに, $X_1 \subseteq f^{-1}(f(X))$. $y \in f(f^{-1}(Y))$ とする. このとき, $x \in f^{-1}(Y)$ が存在して, y = f(x). $x \in f^{-1}(Y)$ だから, $f(x) \in Y_1$. すなわち, $y \in Y$. ゆえに, $f(f^{-1}(Y)) \subseteq Y$.
 - (2) 任意の $y \in f(X_1)$ に対して, $x \in X_1$ が存在して, y = f(x). $X_1 \subseteq X_2$ だから, $x \in X_2$. ゆえに, $f(x) \in f(X_2)$ であり, $y \in f(X_2)$. すなわち, $f(X_1) \subseteq f(X_2)$. 任意の $x \in f^{-1}(Y_1)$ に対して, $f(x) \in Y_1 \subseteq Y_2$. ゆえに, $x \in f^{-1}(Y_2)$. すなわち, $f^{-1}(Y_1) \subseteq f^{-1}(Y_2)$.
 - (3) 任意の $y \in f(X_1 \cup X_2)$ に対して、 $x \in X_1 \cup X_2$ が存在して、y = f(x). $x \in X_1 \cup X_2$ だから、 $x \in X_1$ または $x \in X_2$. ゆえに、 $f(x) \in f(X_1)$ または $f(x) \in f(X_2)$ だから、 $y = f(x) \in f(X_1) \cup f(X_2)$. すなわち、 $f(X_1 \cup X_2) \subseteq f(X_1) \cup f(X_2)$. 一方、任意の $y \in f(X_1) \cup f(X_2)$ に対して、 $y \in f(X_1)$ または $y \in f(X_2)$. $y \in f(X_1)$ のとき、 $x_1 \in X_1$ が存在して、 $y = f(x_1)$. $X_1 \subseteq X_1 \cup X_2$ だから、 $x_1 \in X_1 \cup X_2$. ゆえに、 $y = f(x_1) \in f(X_1 \cup X_2)$. $y \in f(X_2)$ のとき、 $x_2 \in X_2$ が存在して、 $y = f(x_2)$. $X_2 \subseteq X_1 \cup X_2$ だから、 $x_2 \in X_1 \cup X_2$. ゆえに、 $y = f(x_2) \in f(X_1 \cup X_2)$. いずれの場合も、 $x \in X_1 \cup X_2$ が存在して、 $y = f(x) \in f(X_1 \cup X_2)$. すなわち、 $f(X_1) \cup f(X_2) \subseteq f(X_1 \cup X_2)$. 以上から、 $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$.
 - 任意の $x \in f^{-1}(Y_1 \cup Y_2)$ に対して、 $f(x) \in Y_1 \cup Y_2$ たから、 $f(x) \in Y_1$ または $f(x) \in Y_2$. ゆえ に、 $x \in f^{-1}(Y_1)$ または $x \in f^{-1}(Y_2)$ だから、 $x \in f^{-1}(Y_1) \cup f^{-1}(Y_2)$. すなわち、 $f^{-1}(Y_1 \cup Y_2) \subseteq f^{-1}(Y_1) \cup f^{-1}(Y_2)$.
 - 一方、任意の $x \in f^{-1}(Y_1) \cup f^{-1}(Y_2)$ に対して、 $x \in f^{-1}(Y_1)$ または $x \in f^{-1}(Y_2)$. ゆえに、 $f(x) \in Y_1$ または $f(x) \in Y_2$ だから、 $f(x) \in Y_1 \cup Y_2$ であり、 $x \in f^{-1}(Y_1 \cup Y_2)$. すなわち、 $f^{-1}(Y_1) \cup f^{-1}(Y_2) \subseteq f^{-1}(Y_1 \cup Y_2)$. 以上から、 $f^{-1}(Y_1 \cup Y_2) = f^{-1}(Y_1) \cup f^{-1}(Y_2)$.
 - (4) 任意の $y \in f(X_1 \cap X_2)$ に対して、 $x \in X_1 \cap X_2$ が存在して、y = f(x). $x \in X_1 \cap X_2$ だから、 $x \in X_1$ かつ $x \in X_2$. ゆえに、 $f(x) \in f(X_1)$ かつ $f(x) \in f(X_2)$ だから、 $y = f(x) \in f(X_1) \cap f(X_2)$. すなわち、 $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$. 任意の $x \in f^{-1}(Y_1 \cap Y_2)$ に対して、 $f(x) \in Y_1 \cap Y_2$ だから、 $f(x) \in Y_1$ かつ $f(x) \in Y_2$. ゆえに、 $x \in f^{-1}(Y_1)$ かつ $x \in f^{-1}(Y_2)$ だから、 $x \in f^{-1}(Y_1) \cap f^{-1}(Y_2)$. すなわち、 $f^{-1}(Y_1 \cap Y_2) \subseteq f^{-1}(Y_1) \cap f^{-1}(Y_2)$. 一方、任意の $x \in f^{-1}(Y_1) \cap f^{-1}(Y_2)$ に対して、 $x \in f^{-1}(Y_1)$ かつ $x \in f^{-1}(Y_2)$. ゆえに、 $f(x) \in Y_1$ かつ $f(x) \in Y_2$ だから、 $f(x) \in Y_1 \cap Y_2$ であり、 $x \in f^{-1}(Y_1 \cap Y_2)$. すなわち、 $f^{-1}(Y_1) \cap f^{-1}(Y_2) \subseteq f^{-1}(Y_1 \cap Y_2)$. 以上から、 $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2)$.

(5) 任意の $y \in f(X_1) - f(X_2)$ に対して、 $y \in f(X_1)$ かつ $y \notin f(X_2)$. $y \in f(X_1)$ だから、 $x_1 \in X_1$ が存在して、 $y = f(x_1)$. また、 $y \notin f(X_2)$ だから、任意の $x_2 \in X_2$ に対して、 $y = f(x_2)$ とならない。 ゆえに、 $x_1 \in X_1 - X_2$ だから、 $y = f(x_1) \in f(X_1 - X_2)$. すなわち、 $f(X_1) - f(X_2) \subseteq f(X_1 - X_2)$. 任意の $x \in f^{-1}(Y_1 - Y_2)$ に対して、 $f(x) \in Y_1 - Y_2$ だから、 $f(x) \in Y_1$ かつ $f(x) \notin Y_2$. ゆえに、 $x \in f^{-1}(Y_1)$ かつ $x \notin f^{-1}(Y_2)$ だから、 $x \in f^{-1}(Y_1) - f^{-1}(Y_2)$. すなわち、 $f^{-1}(Y_1 - Y_2) \subseteq f^{-1}(Y_1) - f^{-1}(Y_2)$. 一方、任意の $x \in f^{-1}(Y_1) - f^{-1}(Y_2)$ に対して、 $x \in f^{-1}(Y_1)$ かつ $x \notin f^{-1}(Y_2)$. ゆえに、 $f(x) \in Y_1$ かつ $f(x) \notin Y_2$ だから、 $f(x) \in Y_1 - Y_2$ であり、 $f(x) \in f^{-1}(Y_1 - Y_2)$. すなわち、 $f^{-1}(Y_1) - f^{-1}(Y_2) \subseteq f^{-1}(Y_1 - Y_2)$. 以上から、 $f^{-1}(Y_1 - Y_2) = f^{-1}(Y_1) - f^{-1}(Y_2)$.