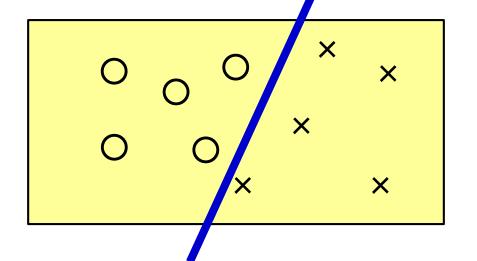
共生社会特論

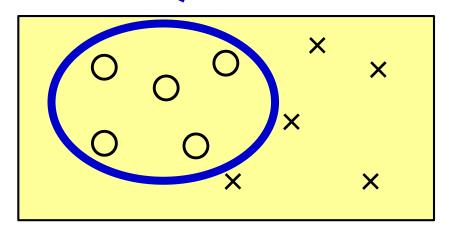
第5回 評価手法

2016年1月17日

「分かる」←「分ける」

• 「分かる」とは区別できること



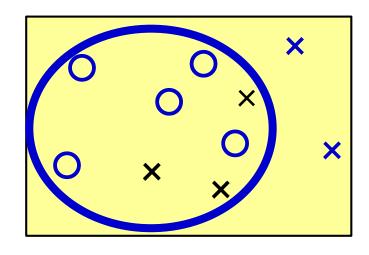


識別器 (discrminator)

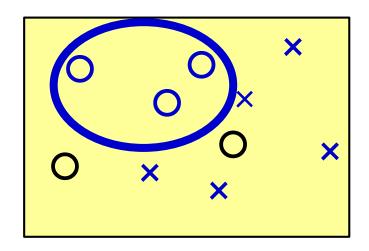
二項分類器 (binary classifier)

正解率 (Accuracy)

• 二項分類器の性能を評価



$$A = \frac{7}{10}$$



$$A = \frac{8}{10}$$

二項分類器の性能評価

真の結果出力結果	Positive	Negative	
Positive	True Positive	False Positive (Type I error)	
Negative	False Negative (Type II error)	True Negative	

Accuracy =
$$\frac{tp+tn}{tp+tn+fp+fn}$$

註:真の結果の代わりに Gold Standard のことも

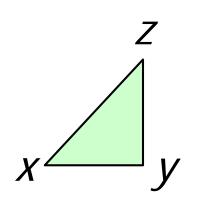
情報検索 (Information Retrieval)

- 二項分類の一種
- 大量の文書群中から求めるものを抽出
 - 一般に、入力キーワードと類似する文書を抽出 ◆類似度が閾値 θ 以上
- ・ 論文検索、Google 検索など

・正解率が性能評価に適さない

類似度と距離

- 類似度 (similarity)
 - ▶ 値が大きいほど似ている
 - ▶ 負の値をとることもある(例:コサイン類似度)
- 距離 (distance)
 - ▶ 値が小さいほど似ている
 - ▶ 距離の公理を満たす必要がある



情報検索と正解率

真の結果出力結果	Positive	Negative	
Positive	100	20	
Negative	30	100,000,000	

Accuracy =
$$\frac{tp+tn}{tp+tn+fp+fn} = \frac{100,000,100}{100,000,150}$$

fnが大きすぎて評価できない

情報検索に適した評価指標

真の結果出力結果	Positive	Negative	
Positive	100	20	
Negative	30	100,000,000	

精度

$$Precision = \frac{tp}{tp+fp}$$

 $\frac{100}{100 + 20}$

再現率

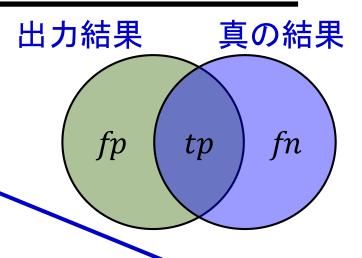
$$Recall = \frac{tp}{tp + fn}$$

$$\frac{100}{100 + 30}$$

精度と再現率

- 精度(適合率)
 - ≻出力結果の内、正しい割合

$$Precision = \frac{tp}{tp + fp}$$



- 再現率
 - ▶ 求めるモノの内、抽出できた割合
 - ▶計算が困難な場合も

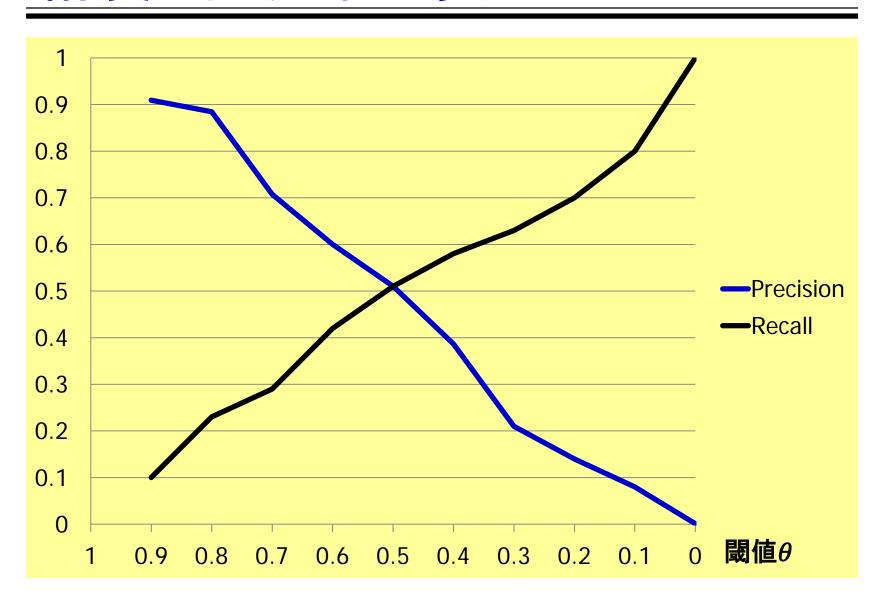
$$Recall = \frac{tp}{tp + fn}$$

分子は同じ

トレードオフ (Trade-off)

- 再現率100%は簡単
 - \triangleright 全文書を出力する $(\theta = 0)$
 - > 実用上は役に立たない
- 精度100%
 - ▶ 類似度が最大となる1個だけ出力
 - ▶漏れが多くなる
- ・いずれを重視するかは目的次第
 - ▶ 再現率重視: 特許検索、論文のサーベイ
 - ▶精度重視: 一般の検索エンジン

精度と再現率の変化



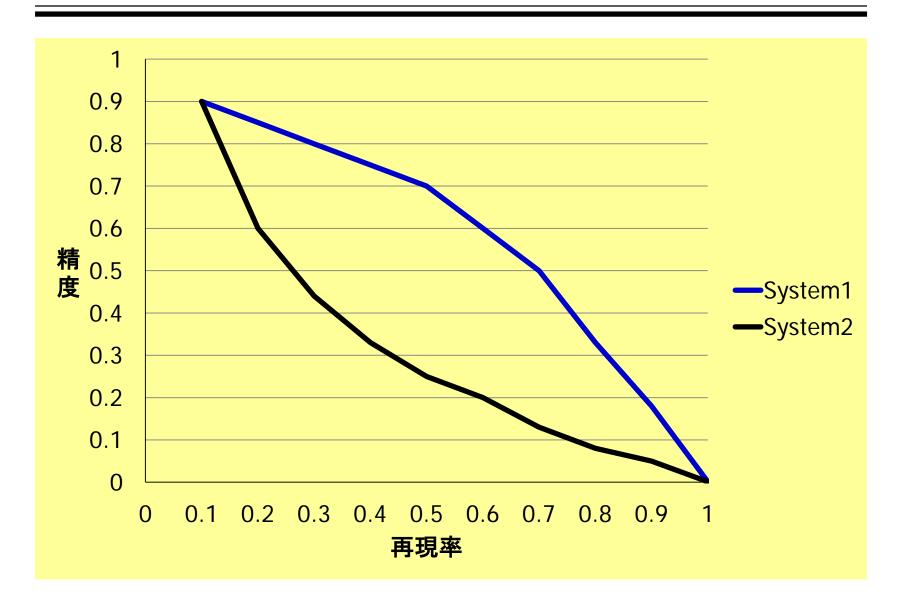
精度と再現率の統合

- F値 (F-measure)
 - > 精度と再現率の調和平均

$$F = 2 \frac{\text{Precison} \times \text{Recall}}{\text{Precison} + \text{Recall}}$$

- Precision-recall breakeven point
 - ▶ 精度と再現率が等しくなったときの値
- 11点平均精度 (11-pt average precision)
 - ▶ 再現率がそれぞれ 0.0, 0.1, ..., 1.0 となる 11点における精度の平均(通常は補完する)

精度•再現率曲線



オマケ: 医療用語

真の状態 検索結果	Positive	Negative	
Positive	True Positive	偽陽性	
Negative	偽陰性	True Negative	

再現率=感度

Sensitivity =
$$\frac{tp}{tp+fn}$$

特異度

Specificity =
$$\frac{tn}{tn+fp}$$

ROC曲線

註:偽陽性≠擬陽性

問題

- 癌検診の結果が「要再検査」 = positive
- 癌の人が「要再検査」になる確率=感度(再現率) 90%
- 癌でない人が「要再検査」になる確率 =特異度 10%
- ・検診を受ける人の内、癌の人の割合 0.1%
- ・「要再検査」の人が本当に癌の確率 =精度は?

答

1万人が受診と仮定

真の状態 検索結果	Positive	Negative	
Positive	9	999	
Negative	1	8991	

再現率=感度 Sensitivity =
$$\frac{tp}{tp+fn}$$
 = $\frac{9}{9+1}$ = 0.9 特異度 Specificity = $\frac{tn}{tn+fp}$ = $\frac{999}{8991+999}$ = 0.1 精度 Precision = $\frac{tp}{tp+fn}$ = $\frac{9}{9+999}$ = 0.0089

解説

「検診を受ける人の内、癌の人の割合」が 重要なパラメータ

▶ 0.1%→10%の場合

真の状態 検索結果	Positive	Negative	
Positive	900	900	
Negative	100	8100	

精度 Precision =
$$\frac{tp}{tp+fp} = \frac{900}{900+900} = 0.5$$

現実問題への適用

真の結果出力結果	Positive	Negative	
Positive	True Positive	False Positive	
Negative	False Negative True Neg		

- ・ 完璧な検査(精度と再現率が100%)はない
- 目的により重視するものが変わる
 - ▶ 癌検査、冤罪、不正受給

正確度と精度の異なる用法

測定などでは意味が異なる

- 正確度 (accuracy)
 - ▶ 真値との近さを示す尺度
- 精度 (precision)
 - ▶ 複数回の値の間でのばらつきの尺度

高正確度だが低精度

高精度だが、低正確度

実験と評価

分類器の構築と評価

訓練データ (training set) で学習後、 テストデータ (test set) で評価

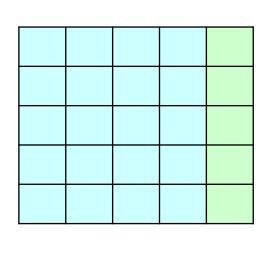
- Closed test
 - ▶ 訓練データとテストデータが同じ
- Open test
 - ▶ 訓練データとテストデータが異なる

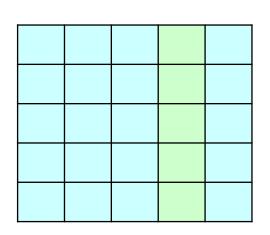
どちらのデータも正解が必要

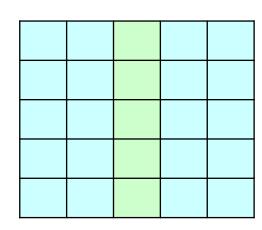
大量に用意できない

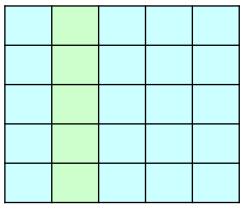
k-分割交差検定 (k-fold cross-validation)

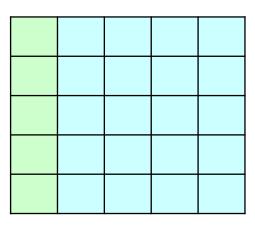
・訓練データとテストデータを交替して実験











5分割交差検定

検定

母集団と標本

- 母集団 (population)
 - > 調査したい対象全体の集合
 - ▶母平均 μ
 - \triangleright 母分散 σ^2
- · 標本 (sample)
 - ▶母集団から無作為抽出した実際の調査対象
 - ▶ 標本調査を複数回することもある
 - ▶ 標本サイズ n
 - \triangleright 標本平均 \bar{x}
 - \triangleright 標本分散 s^2

誤用

- •「母数」(parameter)
 - > 母集団の特徴を表す特性値
 - > 「母平均」「母分散」など
 - ▶ 「分母」や「全数」のことではない

- •「標本数」(sample size)
 - ▶ 意味が曖昧なのでこの訳は避けるべき
 - >「標本の大きさ」か「標本の個数」か不分明
 - ▶ 「標本サイズ」「標本の大きさ」が望ましい

平均

• 相加平均(算術平均)

$$\frac{1}{n} \sum_{i=1}^{n} x_i = \frac{x_1 + x_2 + \dots + x_n}{n}$$

• 相乗平均(幾何平均)

$$\int_{1}^{n} \prod_{i=1}^{n} x_i = \sqrt[n]{x_1 x_2 \cdots x_n}$$

•調和平均

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}$$

マイクロ平均とマクロ平均

キーワード	apple	banana	cherry	durian	eggfruit
出力数	700	400	500	40	3
正解数	350	340	400	38	3
精度	50.0%	85.0%	80.0%	95.0%	100%

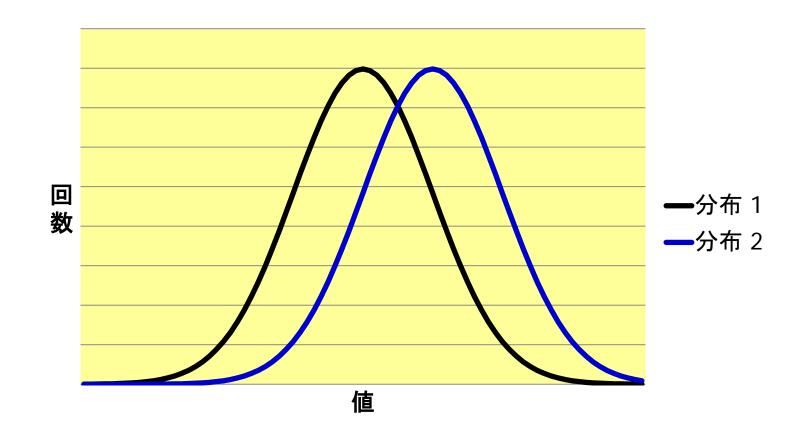
・マクロ平均

$$\frac{1}{5} \left(\frac{350}{700} + \frac{340}{400} + \frac{400}{500} + \frac{38}{40} + \frac{3}{3} \right) = 0.82$$

• マイクロ平均

$$\frac{350 + 340 + 400 + 38 + 3}{700 + 400 + 500 + 40 + 3} = 0.69$$

度数分布



この二つの分布に差はあるか?

有意差検定 (Significance Test)

- ・差が偶然でないことの検証
- 有意水準αの仮説検定
 - αの値は 0.05や0.01
- これをしない限り、「有意な (significantly)」 という用語を使用してはならない

検定の種類

- パラメトリックな検定
 - ▶ t 検定 (正規分布・同じ分散を仮定)
 - ➤ 対応のある t 検定
 - ➤ F 検定
- ノンパラメトリックな検定
 - > 符号検定
 - > ウィルコクソンの符号順位検定
 - ➤ マン・ホイットニーのU検定

仮説検定 (Statistical hypothesis test)

- 帰無仮説を棄却する形で確率的に判断
 - ▶ 有意差があることを示したい場合
 - 1. 「差がない」という帰無仮説を設定
 - 2. 統計量を算出
 - 3. 求められた統計量が起こる確率を導出
 - 4. 確率がα未満なら帰無仮説を誤りとして棄却 ⇒「差がない」が棄却されたので「差がある」

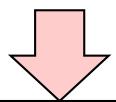
誤りの種類

- 第1種過誤 (Type I error)
 - ➤ 正しい帰無仮説を棄却してしまう
 ◇ 本当は「差がない」のに「差がある」と判断
 - ▶ 起きる確率を危険率と呼ぶ♦ 有意水準αと等しい
- 第2種過誤 (Type II error)
 - → 誤った帰無仮説を棄却しない

 ◇ 本当は「差がある」のに「差がない」と判断
 - ▶ 起きる確率をβで表現する♦ 1 − βを検出力(power)と呼ぶ

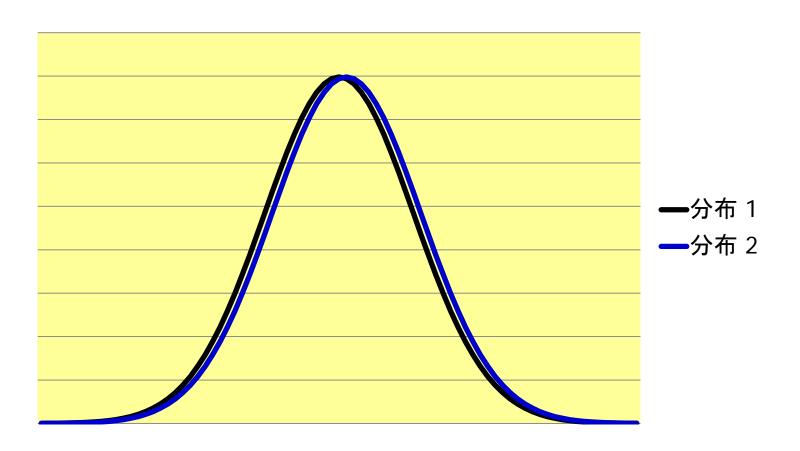
危険率と検出力

- ・ 第1種過誤と第2種過誤の間はトレードオフ
 - ▶ 危険率を決め、その中の検出力最大を選択
- ・ 多重比較の場合はαの補正が必要
 - ▶例:血液型性格診断
- 標本サイズが大きくなれば検出力が上がる



標本サイズを増やせば、どんな有意水準でもクリア可

役に立たない「有意差」



標本サイズを増やせば、上記でも「有意差あり」と判断される

効果量 (effect size)

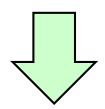
- ・ 有意差検定は「差が偶然ではない」を判定
- ・効果量は「差がどのくらいか」を判定
- ・t検定の場合

$$\left(d = \frac{\bar{x} - \bar{y}}{s}\right)$$

- ▶ 0.20 で効果量小
- > 0.50 で効果量中
- > 0.80 で効果量大

有意差と効果量

標本サイズが小さいと有意差なしだが、 標本サイズを増やすと有意差あり



多くの場合効果量小

このような場合、高確率で効果が小さい

翻訳の自動評価

翻訳の評価

- ・人手による評価
 - ▶ 高コスト
 - ◇両言語の分かる専門家
 - ▶基準が一定でない
 - ▶量が多い
 - ◆ システムを変更するたびに別の翻訳結果

BLEU [Papineni et al. 2002]

機械翻訳のための自動評価指標

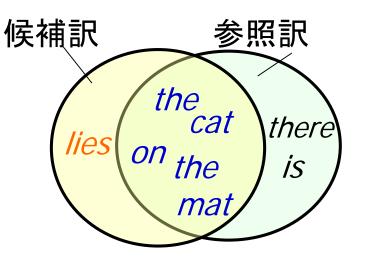
- ▶ 精度ベース
- ▶機械翻訳の出力(候補訳)と 人間による翻訳(参照訳)を比較

候補訳: The cat lies on the mat.

rm or . The cat hes on the mat

参照訳

- The cat is one the mat.
- 2. There is the cat on the mat



BLEU [Papineni et al. 2002]

$$p = \frac{5}{6}$$

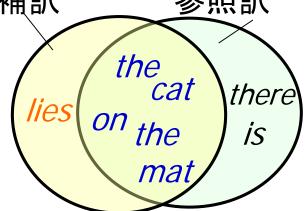
候補訳: The cat lies on the mat.

候補訳

参照訳

参照訳

- 1. The cat is one the mat.
- 2. There is the cat on the mat



不適切な候補訳への対応

$$p = \frac{6}{6}$$

候補訳: The the the the the.

参照訳

- 1. The cat is one the mat.
- 2. There is the cat on the mat

分子を修正

不適切な候補訳への対応

$$p = \frac{\sum_{S \in Candidates} \sum_{w \in S} \sum_{Count_{clip}} (w)}{\sum_{S \in Candidates} \sum_{w \in S} \sum_{Count(w)} \sum_{K \in S} \sum_{$$

候補訳: The the the the the.

$$p = \frac{2}{6}$$

参照訳

- 1. The cat is one the mat.
- 2. There is the cat on the mat

分子を修正

 $Count_{clip}(w) = \max(候補訳中の出現数、参照訳1文中での最大出現数)$

正確性と流暢性

- 正確性 (adequacy)
 - ▶ 訳文が原文の内容をどれだけ保持しているか
 - > 単語の訳の正確さで評価

- 流暢性 (fluency)
 - ▶ 訳文の文としての自然さ、滑らかさ
 - ▶ 単語の並びで評価

単語からn-gramへ

短文へのペナルティ

- 特度ベースのため、翻訳不可能な部分を 無視すると、評価値が上がる
- 短文へのペナルティの導入

c: 候補訳の長さ

r: 参照訳の長さ

$$BP = \begin{cases} 1, & c > r \\ e^{(1-r/c)}, & c \le r \end{cases}$$

BLEU

$$p_n = \frac{\displaystyle\sum_{S \in \mathit{Candidates}} \displaystyle\sum_{n\text{-}\mathit{gram} \in S} \mathit{Count}_{\mathit{clip}}(n\text{-}\mathit{gram})}{\displaystyle\sum_{S \in \mathit{Candidates}} \displaystyle\sum_{n\text{-}\mathit{gram} \in S} \mathit{Count}(n\text{-}\mathit{gram})}$$

BLEU = BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$
 $N = 4$ $w_n = 1/N$

▶ 小さな n: 正確性を評価

▶ 大きな n: 流暢性を評価

適用上の注意

- ・異なる手法間の比較には適さない
 - ▶ ルールベースと統計ベースの比較には不適
 - ▶ 同じシステムのパラメータ改良に使用
- ・文書単位で比較する
 - ➤ 文単位では長いn-gramの値が0になる
- ・ 複数の参照訳を前提にする
 - ▶ 現実には参照訳が一つのことが多い

その他の評価手法(1)

- WER (Word Error Rate)
 - > 参照訳との編集距離を考慮

- PER (Position independent WER)
 - ➤ 語順を無視した WER
 - ▶ 分子は厳密には距離ではない

上記の二つの手法は、1から引いた値の場合も

その他の評価手法(2)

- NIST
 - ➤BLEUの改良版
 - ▶ 分子に下記の値を用いる

$$Info(w_1 \cdots w_n) = \frac{候補訳中の w_1 \cdots w_{n-1} の数}{候補訳中の w_1 \cdots w_n の数}$$

- ROUGE
 - ▶ 精度ベースではなく再現率ベース
 - 自動要約の評価指標

その他の評価手法(3)

METEOR

- > 精度と再現率の調和平均を利用
- > 同義語の情報を利用

RIBES

- > 順位相関係数を用いる
- > 語順を考慮
- > 日英など語順が異なる言語間の翻訳評価用

評価指標の評価

- ・人間の評価との比較
- ・ 相関係数を計算

相関係数

- 二つの確率変数の間の相関の度合い
- 通常 1から -1の値をとる

▶ 1に近い: 正の相関がある

▶ -1に近い: 負の相関がある

▶ 0に近い: 相関が弱い

- ・ 相関がある⇒因果関係がある、ではない
 - ▶「アイスクリームの消費量」と「溺死者数」の間には強い相関があるが因果関係はない

ピアソンの積率相関係数

- パラメトリックな指標
- ・ 正規分布を仮定
- 2組の数値からなるデータ列 $\{(x_i, y_i)\}\ (i = 1, 2, \dots, n)$

$$\frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

スピアマンの順位相関係数

- ノンパラメトリックな指標
- 順位が分かれば計算できる
- ・分布の仮定はない

$$\left(1 - \frac{6\sum d^2}{n^3 - n}\right)$$

ただし、d は対応するモノの順位の差

人手評価と自動評価指標

正確性に関する評価の相関係数(RBMTを除く)

		Spearman	Pearson
JE	RIBES	0.88	0.96
	BLEU	0.69	0.83
	NIST	0.65	0.82
EJ	RIBES	0.93	0.92
	BLEU	0.76	0.84
	NIST	0.59	0.73

I. Goto, et al.: Overview of the Patent Machine Translation Task at the NTCIR-10 Workshop, Proc. of the 10th NTCIR Conf. (2013)

まとめ

- ・ 各種の評価指標
 - ▶正解率•精度•再現率
- 有意差検定
- ・ 翻訳手法の評価方法